Two pentapennies are compatible if there is a polypenny that can be completely tiled by either. Here I show minimal known compatibility figures for pairs of pentapennies.
If you find a smaller solution or solve any of the unsolved cases, please let me know.
5A—5D | 5A—5I | 5A—5K | 5A—5M |
---|---|---|---|
5A—5O | 5A—5P | 5A—5Q | 5A—5R |
5A—5T | 5A—5V | 5A—5X | 5A—5Y |
5D—5I | 5D—5K | 5D—5M | 5D—5O |
5D—5P | 5D—5Q | 5D—5R | 5D—5T |
5D—5V | 5D—5X | 5D—5Y | 5I—5K |
5I—5M | 5I—5O | 5I—5P | 5I—5Q |
5I—5R | 5I—5T | 5I—5V | 5I—5X |
5I—5Y | 5K—5M | 5K—5O | 5K—5P |
5K—5Q | 5K—5R | 5K—5T | 5K—5V |
5K—5X | 5K—5Y | 5M—5O | 5M—5P |
5M—5Q | 5M—5R | 5M—5T | 5M—5V |
5M—5X | 5M—5Y | 5O—5P | 5O—5Q |
5O—5R | 5O—5T | 5O—5V | 5O—5X |
5O—5Y | 5P—5Q | 5P—5R | 5P—5T |
5P—5V | 5P—5X | 5P—5Y | 5Q—5R |
5Q—5T | 5Q—5V | 5Q—5X | 5Q—5Y |
5R—5T | 5R—5V | 5R—5X | 5R—5Y |
5T—5V | 5T—5X | 5T—5Y | 5V—5X |
5V—5Y | 5X—5Y | ||
Last revised 2017-08-17.