Pentapent Compatibility

A pentapent is made by joining five regular pentagons edge to edge. Two or more polyforms are said to be compatible if there exists a figure that can be tiled with any of them. Here I present some compatibility figures for pentapents.

Scott Reynolds first studied pentapent compatibility and found most of the early solutions.

I adopt Erich Friedman's nomenclature:

 ABCDEFGHIJKLMNPQRSTUVWXYZ
A*442105555255556222552×225
B4*×26652×255552××2255×1034
C4×*22×255442×1085255410××5×
D222*542244422422255425?24
E10625*555?46255544?36??665
F56×45*51045?62?52253102?224
G552255*525525224265242?44
H52525105*2522?24?42565?645
I5×54?422*424?22?2852610?210
J224445554*5645424221524?44
K55446?5225*5?4255255?21042
L55222622465*252525552???6
M55×2525??4?2*4210?45?2??25
N551045?2225454*44446562?104
P62825524242224*5245222?44
Q2×52424??2551045*?255552?5
R2×2242242452?42?*25221010230
S2255?562822544422*51054?52
T525533555255565555*55?645
U55446102621555?5252105*6?1086
V25102?24562?226252556*???6
W×××5??2?1042??225104???*?210
X210×?62?6??10????210?610??*2?
Y23526244244?2104?2548?22*4
Z54×4544510426544530256610?4*

2 Pentapents

3 Pentapents

4 Pentapents

5 Pentapents

6 Pentapents

8 Pentapents

10 Pentapents

15 Pentapents

30 Pentapents

Last revised 2012-04-20.


Back to Pairwise Compatibility
Back to Polyform Compatibility
Back to Polyform Curiosities
George Sicherman [ HOME | MAIL ]