Hexa-Penta-Tetriamonds

Tetriamonds, pentiamonds, and hexiamonds are plane figures made by joining respectively four, five, and six equilateral triangles.

This page shows figures that can be tiled by each of a given tetriamond, pentiamond, and hexiamond. It was inspired by Livio Zucca's Pento-Tetro-Trominoes. If you find a smaller solution or solve an unsolved case, please write.

6A-5I-4A6A-5I-4I6A-5I-4V6A-5J-4A6A-5J-4I6A-5J-4V
6A-5Q-4A6A-5Q-4I6A-5Q-4V6A-5U-4A6A-5U-4I6A-5U-4V
6E-5I-4A6E-5I-4I6E-5I-4V6E-5J-4A6E-5J-4I6E-5J-4V
6E-5Q-4A6E-5Q-4I6E-5Q-4V6E-5U-4A6E-5U-4I6E-5U-4V
6F-5I-4A6F-5I-4I6F-5I-4V6F-5J-4A6F-5J-4I6F-5J-4V
6F-5Q-4A6F-5Q-4I6F-5Q-4V6F-5U-4A6F-5U-4I6F-5U-4V
6H-5I-4A6H-5I-4I6H-5I-4V6H-5J-4A6H-5J-4I6H-5J-4V
6H-5Q-4A6H-5Q-4I6H-5Q-4V6H-5U-4A6H-5U-4I6H-5U-4V
6I-5I-4A6I-5I-4I6I-5I-4V6I-5J-4A6I-5J-4I6I-5J-4V
6I-5Q-4A6I-5Q-4I6I-5Q-4V6I-5U-4A6I-5U-4I6I-5U-4V
6L-5I-4A6L-5I-4I6L-5I-4V6L-5J-4A6L-5J-4I6L-5J-4V
6L-5Q-4A6L-5Q-4I6L-5Q-4V6L-5U-4A6L-5U-4I6L-5U-4V
6O-5I-4A6O-5I-4I6O-5I-4V6O-5J-4A6O-5J-4I6O-5J-4V
6O-5Q-4A6O-5Q-4I6O-5Q-4V6O-5U-4A6O-5U-4I6O-5U-4V
6P-5I-4A6P-5I-4I6P-5I-4V6P-5J-4A6P-5J-4I6P-5J-4V
6P-5Q-4A6P-5Q-4I6P-5Q-4V6P-5U-4A6P-5U-4I6P-5U-4V
6S-5I-4A6S-5I-4I6S-5I-4V6S-5J-4A6S-5J-4I6S-5J-4V
6S-5Q-4A6S-5Q-4I6S-5Q-4V6S-5U-4A6S-5U-4I6S-5U-4V
6U-5I-4A6U-5I-4I6U-5I-4V6U-5J-4A6U-5J-4I6U-5J-4V
6U-5Q-4A6U-5Q-4I6U-5Q-4V6U-5U-4A6U-5U-4I6U-5U-4V
6V-5I-4A6V-5I-4I6V-5I-4V6V-5J-4A6V-5J-4I6V-5J-4V
6V-5Q-4A6V-5Q-4I6V-5Q-4V6V-5U-4A6V-5U-4I6V-5U-4V
6X-5I-4A6X-5I-4I6X-5I-4V6X-5J-4A6X-5J-4I6X-5J-4V
6X-5Q-4A6X-5Q-4I6X-5Q-4V6X-5U-4A6X-5U-4I6X-5U-4V

Last revised 2016-05-18.

Back to Multiple Compatibility < Polyform Compatibility < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]